skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dedina, Cedric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study transitions from convective to absolute instability near a trivial state in large bounded domains for prototypical model problems in the presence of transport and negative nonlinear feedback. We identify two generic scenarios, depending on the nature of the linear mechanism for instability, which both lead to different, universal bifurcation diagrams. In the first, classical case of a linear branched resonance the transition is hard, that is, small changes in a control parameter lead to a finite-size state. In the second, novel case of an unbranched resonance, the transition is gradual. In both cases, the bifurcation diagram is determined by interaction of the leading edge of an invasion front with upstream boundary conditions. Technically, we analyze this interaction in a heteroclinic gluing bifurcation analysis that uses geometric desingularization of the trivial state. 
    more » « less